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Tuyère Convergente - Divergente
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Compression
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Détente

Faisceau continu
d’ondes de détente
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Diagramme de chocs obliques
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 Il faut déterminer θ. Géométriquement, on voit que: 
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Relation pour le saut en pression

,2 ,1
2

tan
cos (1 tan tan )

n n

t

w w
w

δ
θ θ δ

−
= −

+ 1 1 costw a M θ=

[ ] 1

1

tan
cos sin tan

nw M
a

δ
θ θ δ

= −
+

 Chapitre 7 (équation 7.30):
[ ] [ ]

,12
1 1 1

n
n

wp
M

a aρ
Π ≡ = −

2
1

tan
cot tanM

δ
θ δ

Π
=

+

,1 1 sinnM M θ=



Flavio Noca Chap 9 – PM

Relation pour le saut en pression
pour les chocs faibles

 On suppose que le choc est infiniment faible (~ onde de Mach)
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Relation pour l’entropie
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Faisceau d’ondes de chocs infiniment faibles
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Saut en entropie à travers un faisceau
d’ondes de chocs infiniment faibles

 Saut en entropie à travers une onde de choc faible
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 Saut en entropie à travers le faisceau entier
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L’écoulement à travers un faisceau continu de chocs infiniment 
faibles est isentropique
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Saut en pression à travers un faisceau
d’ondes de chocs infiniment faibles

 Saut en pression à travers une onde de choc faible
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 Saut en pression à travers le faisceau entier
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 Comme l’écoulement est isentropique, on peut avoir:              ou   0δ > 0δ <

On peut avoir une DETENTE ou une COMPRESSION
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Résumé

Faisceau continu
d’ondes de détente
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Variation infinitésimale
à travers une ligne de Mach

 Variation de vitesse
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 Comme la vitesse tangentielle ne change pas
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 Ainsi 1
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Variation infinitésimale
à travers une ligne de Mach

θ µ

δ∆

1w w=

,1tw
,2 ,1t tw w=

2w w w= + ∆

( )cos
1 tan

cos
w

w w
µ δ

µ δ
µ
− ∆

= → + ⋅∆
+ ∆

 On obtient

2
1

11
1M

δ= + ∆
−

 De plus

1 1
1

w w
ww w w

w

∆
= ≈ −

∆+ ∆ +

2
1 1 dwd M

w
δ = − − ⋅

2
1 1 wM

w
δ ∆

∆ = − − ⋅



Flavio Noca Chap 9 – PM

 Rappel, Chapitre 4
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 On définit la fonction de Prandtl-Meyer

Fonction de Prandtl-Meyer

 Elle peut être obtenue analytiquement
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Problème

• Données

• Inconnues

1,  M δ

2M

 On a donc

 Et on obtient pour une onde de compression isentrope
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 On obtient pour une onde de détente isentrope
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Que représente la fonction de Prandtl-Meyer?
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La fonction Prandtl-Meyer            représente l’angle dont doit s’ouvrir une 
rampe afin de détendre l’écoulement de M=1 à M
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